您当前的位置:首页 > 北斗系统 > 空间卫星星座 > 空间卫星星座

电离层是怎样形成的?有哪些主要特征?

添加时间:2018-10-15 10:17:37 来源:环球新时空信息技术研究院
  地球高层大气的分子和原子,在太阳紫外线、Χ射线和高能粒子的作用下电离,产生自由电子和正、负离子,形成等离子体区域即电离层。电离层从宏观上呈现中性。电离层的变化,主要表现为电子密度随时间的变化。而电子密度达到平衡的条件,主要取决于电子生成率和电子消失率。电子生成率是指中性气体吸收太阳辐射能发生电离,在单位体积内每秒钟所产生的电子数。电子消失率是指当不考虑电子的漂移运动时,单位体积内每秒钟所消失的电子数。带电粒子通过碰撞等过程又产生复合,使电子和离子的数目减少;带电粒子的漂移和其他运动也可使电子或离子密度发生变化。
 
  从离地面约50千米开始一直伸展到约1000千米高度的地球高层大气空域,其中存在相当多的自由电子和离子,能使无线电波改变传播速度,发生折射、反射和散射,产生极化的旋转并受到不同程度的吸收。
 
  大气的电离主要是太阳辐射中紫外线和 X射线所致。此外,太阳高能带电粒子和银河宇宙射线也起相当重要的作用。太阳辐射使部分中性分子和原子电离为自由电子和正离子,它在大气中穿透越深,强度(产生电离的能力)越弱,而大气密度逐渐增加,于是,在某一高度上出现电离的极大值。大气不同成分,如分子氧、原子氧和分子氮等,在空间的分布是不均匀的。它们为不同波段的辐射所电离,形成各自的极值区,从而导致电离层的层状结构。在电离作用产生自由电子的同时,电子和正离子之间碰撞复合,以及电子附着在中性分子和原子上,会引起自由电子的消失。大气各风系的运动、极化电场的存在、外来带电粒子不时入侵,以及气体本身的扩散等因素,引起自由电子的迁移。电离层内任一点上的电子密度,决定于上述自由电子的产生、消失和迁移三种效应。在不同区域,三者的相对作用和各自的具体作用方式也大有差异。
 
  在55千米高度以下的区域中,大气相对稠密,碰撞频繁,自由电子消失很快,气体保持不导电性质。在电离层顶部及其以上区域,大气异常稀薄,电离的迁移运动主要受地球磁场的控制,称为磁层。
 
  电离层的主要特性,由电子密度、电子温度、碰撞频率、离子密度、离子温度和离子成分等基本参数来表示。
图文推荐
热门阅读
Top